Correction to: Deep learning on multi-view sequential data: a survey
نویسندگان
چکیده
منابع مشابه
A Survey on Multi-view Learning
In recent years, a great many methods of learning from multi-view data by considering the diversity of different views have been proposed. These views may be obtained from multiple sources or different feature subsets. For example, a person can be identified by face, fingerprint, signature or iris with information obtained from multiple sources, while an image can be represented by its color or...
متن کاملMulti-view Discriminative Sequential Learning
Discriminative learning techniques for sequential data have proven to be more effective than generative models for named entity recognition, information extraction, and other tasks of discrimination. However, semi-supervised learning mechanisms that utilize inexpensive unlabeled sequences in addition to few labeled sequences – such as the Baum-Welch algorithm – are available only for generative...
متن کاملDeep Multi-view Learning to Rank
We study the problem of learning to rank from multiple sources. Though multi-view learning and learning to rank have been studied extensively leading to a wide range of applications, multi-view learning to rank as a synergy of both topics has received little attention. The aim of the paper is to propose a composite ranking method while keeping a close correlation with the individual rankings si...
متن کاملOn Deep Multi-View Representation Learning
We consider learning representations (features) in the setting in which we have access to multiple unlabeled views of the data for representation learning while only one view is available at test time. Previous work on this problem has proposed several techniques based on deep neural networks, typically involving either autoencoderlike networks with a reconstruction objective or paired feedforw...
متن کاملMulti-View Representation Learning: A Survey from Shallow Methods to Deep Methods
Recently, multi-view representation learning has become a rapidly growing direction in machine learning and data mining areas. This paper first reviews the root methods and theories on multi-view representation learning, especially on canonical correlation analysis (CCA) and its several extensions. And then we investigate the advancement of multi-view representation learning that ranges from sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Artificial Intelligence Review
سال: 2022
ISSN: ['0269-2821', '1573-7462']
DOI: https://doi.org/10.1007/s10462-022-10367-2